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Relaxed and symmetry-constrained potential energy curves (PECs) for 2- 0-C1(2) 0.14 = 7Q 0.03
bromopyrazine and pyridine are shown in Figure 3. A similar analysis has been | | |
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carried out earlier by Sanche and coworkers, see e.g. [3]. For each molecule, four
Table 1:Quantities calculated for pyridine (1), pyrazine (2) and derivatives at “B3LYP /aug-cc-pV'TZ level, “B3LYP /6-
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different curves along Cn X bond are mvestlgated, namely the one of the neutral 31+G* level of theory. °Results taken from [1]. “Enthalpies of reactions of type 1 for pyridine and pyrazine and

mO:-eClﬂe; relaxed anionic curve (fepfeseﬂtiﬂg 77*/ o* mixed State); 7 P:-aﬂaf state, reactions of type 2 for substituted molecules. “Calculated for 3-,4- and 5- hydrogen position, from the lowest to highest
and pure o* state. Further analysis of Mulliken charges and spins suggests that the value, respectively.
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while in substituted molecules the electron rather stays at halogen atom:
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