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Basics of terrestrial fusion?

d-t fusion (more efficient) 
T=150 mil K
Alpha-particles and neutrons carry 
most of the energy

Fusion on earth (Controlled fusion!)

Vac.

Supercon–
ducting 
magnet 

Shield Blanket

Turbine  
generator

Plasma

a

Plasma heating

(rf, microwave, . . .)

Schematic magnetic fusion reactor
ITER, DEMO
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Atomic physics for magnetically 
confined fusion: Where does it meet the 

planetary science? 

- 17 Mev per d+t fusion in plasma core
(> 50 mil. K) ; 80%  transferred by n to Li
blanket which fuel t; 20% carried by a,
1/4 supports the plasma, rest needs to be
exhausted by e, p, a via atomic inelastic
processes:

- SOL plasma ( 50-300 eV), absence of 
neutrals and molecules,  electron-impurity ion
processes, radiative plasma cooling

- Divertor region, 50 - 1 eV, 1014 -15 

cm3, H, H2 dominant, He, He+,++, 
impurities;neutral particle transport, 
helium removal, recombination, 
collision with surfaces:

Key for thermal power exhaust problem

Planetary science is in energy
a lower, partially overlapping
region of collision energies!

1.Typical for the divertor region is formation 

of the molecules, particularly H2, H2
+, (if 

carbon facing plasma material), vib-rot 

excited, metals, inert gases,…

2. Huge increase of the cross sections (as n4

for charge transfer) necessitates 

electronically excited atomic and molecular 

states!!!

3. Vibrationally resolved collisions  for 

volume plasma recombination schemes MAR 

and MAD for hydrogen and hydrocarbons; 

For infrared emission  plasma diagnostics; 

For CR models of H2/D2 plasma.

4. High rotational temperatures of hydrogen 

molecules indicated!!!

5.Tritium co-deposition in tokamaks (with 

carbon, with tungsten around grain 

boundaries, too) closely linked with the 

plasma chemistry
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D. Coster et al, AIP Conf. Proc. 1125(1), 112 (2009)

Also:

D. Reiter et al, Phys. Scr. T138, 014014 (2009) Hydrocarbon sens analysis

Why does fusion/plasma needs accurate atomic physics theory?
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And:    It is 21st century

For these kind of data (vib-rot-elec excit.,isotop.):

*Experiments  difficult: 

Impossible? Missing !

*Quality theoretical data: Sparse !

And because :

H++H2 is the most fundamental ion-molecule system

We should know all about it

Do not know well  this only (3+2)-body system?

Electronically, rovibrationally excited processes????
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Example :Astrophysical applications

◼CT in H++H2 in the early universe (0.1meV-10 eV); 

◼Two-body association (hydrogen plasma) in collapse of interstellar clouds.

[a bad example from astrophysical

modeling community (can happen to 

Fusion community too)

Savin et al, ApJL (2004)]

CT in H++H2(v=0)

Data “produced” as fitted the need

of a particular plasma-radiative model

These cannot be called scientific data!!! 

However a critical evaluation and 

recommendation can lead to the DATA! 

Need for comprehensive, critically evaluated data;

Communication between various communities (theory, experimental, atomic,plasma

Also Because 2):
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Electronically excited : *Huge increase of the cross sections (as n4 for  CT) 

*For a complete H/H2 CR model, Hα diagnostics,

*Fulcher-band diagnostics for H2.

Vibrationally excited:  *Infrared emission  plasma diagnostics. 

*CR models of H2/D2 plasma.

*Lack of quantitative analysis in molecular spectr. 

Rotationally : High rotational temperatures of H2 indicated?

Isotopic constitution :    *D2,T2, HD, HT and DT, Sensitive on vib. energy levels.

and excitation               *Wherever  internal energy plays role

(“ion conversion”).

*No data for excited molecules.

*Ex.:σpex(D
++H2→HD+H+) » 10 σpex(D

++HD→D2+H+).

WHAT IS NEEDED?
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WHAT HAVE WE DID  WITH VIBRATIONAL 

RESOLUTION?

•Comprehensive  QM calculations of cross sections, 

•on the “same footing”

•0.5-100 eV collision energy 

EXC

CT

DISS

EXC

CT

DISS

ASSOC

ASSOC

+ENERGY&ANGULAR SPECTRA (DISS)
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3 2 2Fragments of H +: (H ,H +,H,H+)

R
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H

r



Geometry

The approximation:

Sudden approximation for target  
rotations (IOSA):  frozen

IOSA : "frozen"

Cross sections averaged over 

By understanding the underlying physics FIRST
(What to expect?)
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3

Two lowest electronic surfaces

HOW?
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How did we approach  for E< 10 eV?

Fully QM!!

•Diabatic representation for two electronic surfaces

•Large configuration space in r and R  (40 a.u.) 

•Dissociative continuum discretized in more than 800 states; 

•Solve resulting Schrödinger equation by expanding in diabatic 

vibrational basis  (bound + continuum)
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Resulting equation is a system of ordinary differential equations : Variable is R
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“Battle field of hydrogen molecule:

Two-electronic, strongly coupled potential-surfaces of H3
+; Reactive

Physics highly dependent on projectile-diatom angle; Reactive at small γ

Reactive at very large r for large γ

Need large config space (40 a.u.)

Violent coupling (CT)

Need trans to diabatic 

representation
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H3
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+
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Dissociation

Charge transfer

=85
0

Physics in direct channel

Dissociative continuum discretized

Extensively rich

•We describe both electronic and 
nuclear motion quantum-
mechanically

•Solve resulting Schrödinger 
equation by expanding in diabatic 
vibrational basis

•Several hundreds states to 
converge 

Why is this so difficult?

Too many states and processes!!!
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Collision dynamics extensively rich  
(within both bound states and continuum)
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Verification of data in action: Calculations of various 

energy scales by different methods and comparison 

where they overlap
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Note comparison with Holiday’s experiment :Validation for v=1 and 0 only

Also comparison with Ichihara semi-classical calculation, 

and our semi-classical calculation
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More on comparisons 

with sparse experiments.

Validation in action: Comparison with experiment

Vibrational excitation: Differential cross sections

Excellent agreement! Partially validated!
Krstic, 1998
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Dissociation from various υ H++H2
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Collisionally assisted diatomic association  
(also known as three-body recombination)

Two atoms (or ion-atom) associate in presence of a third  

particle which “relaxes” the excess energy and momentum.

2H++(H+H) -> H++H direct association
-> H+H + charge transfer association2

H+(H++H) -> H++H2 charge transfer association

2-> H+H + direct association
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Dominance of the H2+ creation in both cases

Possible processes:
Range of values:

5x10-32-6x10-34 

(200-20,000K)
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“Interplay” of transport and inelastic processes
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Thank You
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