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e TS applications = motivation

e TS diagnostic & modeling

* understanding of physics and chemistry behind TS
* Optimization

* summary
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TS — DC DRIVEN SELF-PULSING DISCHARGE

« streamer initiates breakdown and short spark
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highly reactive
non-equilibrium
plasma

suitable for
biomedical &
environmental
applications

GENERATED PLASMA

* UV spectrum is dominated by N, SPS, and N II (O Il) ionic lines
* Vis spectrum can be fitted by combining N I, N II, O [, O Il and H lines

* Texxe ~30KK (NI, Oll), Texx ~10kK (N I, O I)
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BIO-DECONTAMINATION OF WATER AND SURFACES

 tested on various bacteria, yeasts, spores and biofilms

HV

Quartz window

Machala Z. et al., J. Phys. D: Appl. Phys. 43, 222001 (2010).



1

VOCs
removal

|

CO,
utilization

|

lean flame
stabilization

|

bio-medical
applications

|

disinfection
of water and
surfaces

DISCHARGE == APPLICATION

BIO-DECONTAMINATION OF WATER AND SURFACES

 tested on various bacteria, yeasts, spores and biofilms

* antimicrobial agents in plasma - UV radiation, electric field, ions, neutrals

HV
e ‘
Mesh

HV

all agents UV, neutral species
Machala Z. et al., J. Phys. D: Appl. Phys. 43, 222001 (2010).

UV only
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BIO-DECONTAMINATION OF WATER AND SURFACES

 tested on various bacteria, yeasts, spores and biofilms
* antimicrobial agents in plasma - UV radiation, electric field, ions, neutrals

* the effect of reactive neutral species dominates in TS

HV

HV

all agents

UV, neutral species
Machala Z. et al., J. Phys. D: Appl. Phys. 43, 222001 (2010).

UV only

Quartz window
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BASIC RESEARCH OF TS STILL NEEDED

e optimization of reactive species generation
* optimal settings for generation of NO, NO, or O3

* optimization of chemical selectivity
* which gas phase products dominate in TS?
e can we change it?

* power efficiency
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EXPERIMENTAL SET-UP

Supply -—

HV DC —
Power | V'V
1\50Q

oscilloscope

high voltage probe
current monitor
resistor shunts

V, | waveforms
repetition rate
energy per pulse
plasma resistance
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EXPERIMENTAL SET-UP

HV
probe *
V R vv,\ | ~=—> spectrometer
g I_'VVV | iCCD camera
\~.‘ photomultiplier
HV DC AN - \ TC-SPC
Power J
T, evolution (N, SPS)
ﬁ n. evolution (Stark)
E/N in streamer
oscilloscope V, | waveforms

high voltage probe

current monitor
resistor shunts

repetition rate
energy per pulse
plasma resistance
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EXPERIMENTAL SET-UP
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EXPERIMENTAL SET-UP

i
v "

1\50 Q

J

oscilloscope

high voltage probe

current monitor
resistor shunts

V, | waveforms
repetition rate
energy per pulse
plasma resistance

FT-IR spectrometer, gas analyzer (NO,, CO,, HCs, O3)
Dominant products: NO, NO, (~7x10'¢ molecules/J)

<>~ spectrometer

ICCD camera

\~.‘ photomultiplier

) TC-SPC

T4 evolution (N2 SPS)
ne evolution (Stark)
E/N in streamer
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CHEMICAL KINETIC MODEL - ZDPlasKin [1]

ELEMENTS
e Ar
END

ISPECIES
e Ar Art+
END

BOLSIG

REACTIONS

e + Ar => e + e + Ar™+
e + Ar™+ + Ar => Ar + Ar ! 1.0d-25

! Bolsig Ar->Ar~+

Our major task:
physical mode| ==
of Transient Spark

+

.---.

numerical solver
of Boltzmann equation [2]

numerical solver for system
of ordinary differential equations

compilation

describes evolution of Tg, E/N, ...

[1] www.zdplaskin.laplace.univ-tlse.fr
[2] www.bolsig.laplace.univ-tlse.fr


http://www.zdplaskin.laplace.univ-tlse.fr/
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STREAMER-TO-SPARK TRANSITION

e E/N(t) during streamer based on literature and our experimental data [1]

[1] Janda M et al. (2018)
J. Phys. D: Appl. Phys. 51, 334002
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1 ]
electrical STREAMER-TO-SPARK TRANSITION
diagnostic e E/N(t) during streamer based on literature and our experimental data [1]

1 e N evolution from Naidis [2], Ty from N, SPS, E(t) calculated (discharging of Cix) [3]
liquid phase « hydrodynamic expansion breakdown mechanism
products

] IT, —» Tp — hydrodynamic expansion — [N — TE/N — ionization — breakdown
optical | —
diagnostic o 1 / 41000

2 P 1
l = 1 spark |
30.8 4800
gaseous w l ]
p“’d“its o B —
® - — E/NT[Td]

: 504 ] g T IKl ]
chemical [1] Janda M et al. (2018) @ | 7 | 1400
modeling J. Phys. D: Appl. Phys. 51, 334002 @ | |secondary streamer

[2] Naidis GV, (2009) 5021 l 1200
Eur. Phys. J. Appl. Phys. 47, 22803 LY, -
[3] Dvong L., Janda M (2015) ] N

|IEEE Trans. Plasma Phys. 43, 2562-2570 0 oo a00 eoo 800
time [ns]

T, [K1 and E/N [Td]
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1004
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HORT SPARK PHASE

 starts when ionization degree reaches 2x102, duration 400 ns

* E(t) calculated (discharging of Ci.), T evolution calculated

Y T - )
o — E [kv/cm] ]
N o TTumIs I
L/ o Talevl |
| ’
_________________ 16

1000
time [ns]

Te [eV] & E [kV/cm]

2 2
de e’ E 3
— = — §le=JkT v,
dt m,v,
510‘1
510‘2
';'
510‘3 é.
w
v_— collision frequency of electrons
| 10-4 € — electron mean energy
’ Tg— gas temperature
0 — relative energy lost per collision,
105 taking into account both

elastic and inelastic processes
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1 | .
electrical RELAXATION PHASE — work in progress D 4 = 50 ym
. . p
diagnostic « plasma channel expansion [1] D" = 500-1000 pm
l D (t) _ Dspark + (Dmax_ Dspark) {1 —ex (_t/ T )} Texp = 3'30 “S
liquid phase p - p p P exp
products .
1
optical i E— ————————
diagnostic . N ]F 33500
L ;
° LI -3000
gaseous §~ : | g
products . iy N/N, 42500 2
l E I e Ty [K], Tg = 3.5x10° s 72000 E’.
. 0 ’ = T, [K], experiment ] E
chemical = o5 i e relative density N/N, 1500 &
modeling [ | &
-1000
ol o Ty . L_ 500
[1] Salmon MA (2018) Thesis, Univ. Paris-Saclay 0 | | 00002 | 76.00098 0.001

[2] Janda M et al. (2012) Plasma Sources Sci. Technol. 21, 045006 time [s]
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1 .
electrical RELAXATION PHASE — work In progress D 4 = 50 pm
diagnostic « plasma channel expansion [1] D, =500-1000 pm
. D (t) = D*™ + (D" —D*")[1—exp(—t/t. ) Fop = 550 HS
liquid phase p - p P P p exp
products . I max o
M temperature changes [2] T, (t) = T, + (Tg — Tg) exp (—t/ Tg>
: e from measured 'steady-state’ temperature T (%)
optical i R S
diagnostic . Ll JF 13500
1 L |
. LI -3000
gaseous §~ : I g
products . iy N/N, 42500 2
l E i J—— To [K], Tq = 3.5x10° 5 72000 E_
Chemica| -% - . Iélgléi]\};)égil;?yerl\]?No _i 1500 s
modeling 3% e
-1000
ok i Ty . 4500
. ‘ L ‘ ‘ Y A —
[1] Salmon MA (2018) Thesis, Univ. Paris-Saclay 0 0.0002 0.00098 0.001

[2] Janda M et al. (2012) Plasma Sources Sci. Technol. 21, 045006 time [s]
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1 | .
electrical RELAXATION PHASE — work in progress D, = 50 m
diagnostic « plasma channel expansion [1] D, =500-1000 um
l D (t) _ Dspark + (Dmax_Dspark) {1_EX (_t/T )} Texp =3-30 HS
liquid phase P - p p P exp
products . _ o max 0
1 temperature changes [2] T, (t) = T, + (Tg _ Tg) exp (_ t/ Tg>
. e from measured 'steady-state’ temperature T (%)
optica 7 | _
diagnostic * mixing with ambient air Ls| 13500
l il J+ f C —:3000
e inflow (J ,0,) of N2 and O, : " g
plaaucis - several models tested il R
l E i e Ty [K], Tg = 3.5x10° s 72000 Z.’.
+ o r m T, [K], experiment i
chemical JN2/OZ(t) oc A nNZ/OZ(t) -%05' e relE:zti]ve d?ensity N/No _’150043
modeling s ] 1 =&
Jwso,(t) o< Ap(t)
oL i Ty . 4500
. ‘ Al ‘ ‘ N i
[1] Salmon MA (2018) Thesis, Univ. Paris-Saclay 0 0.0002 0.00098 0.001

[2] Janda M et al. (2012) Plasma Sources Sci. Technol. 21, 045006 time [s]
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MODEL VERIFICATION

 voltage temporal evolution — good agreement
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[ ] L
107 o ne from Stark broadening

optical | # nefrom plasma conductivity
diagnostic | == ne from modeling

MODEL VERIFICATION

 voltage temporal evolution — good agreement

 electron density — reasonable agreement
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RONS - reactive oxygen and nitrogen species
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1
S RONS DURING ACTIVE DISCHARGE PHASE
by streamer » streamer produces mostly N.* and O atoms
1 o o
ionization &  strong degree of ionization and atomization
f;‘ty"g”g;?ﬁ“’” * more N than O atoms indicates different final products
7 —_——————— 7 10° °
l 1013:
more N atoms [
during spark _10v¢
".'E 7
g E
51014

1013 :

102 |=| ! 1 ! ! !
800 850 900 950 1000 1050 1100
time [ns]

-a
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» streamer produces mostly N.* and O atoms

» strong degree of ionization and atomization

RONS DURING ACTIVE DISCHARGE PHASE

* more N than O atoms indicates different final products

1018 :

1017 ;

[

o
—
(=]

=

o
—
w

[

o
—
'S

1013 :

1012

- 10°
11071

11072

—_
)
b

I»—= =
(=] o
tn L
molar fraction

=
o
&

=
o
4

-8

e generation of some NO

shortly after the spark

;
e+N < e+e+N*

N*+0, ~ NO + O*
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Oatots RONS DURING ACTIVE DISCHARGE PHASE

by streamer » streamer produces mostly N.* and O atoms

|

lonization &

g;ogﬁpi;?iion * more N than O atoms indicates different final products
l 1018;

more N atoms [
during spark 1017}

» strong degree of ionization and atomization

11°« generation of some NO

10 shortly after the spark
;1072 Tel

e+N < e+e+ N’
N*+ O, - NO + O*
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1 ]
S NO, NO; and Os GENERATION MECHANISMS
by Strelamer « NO generated by modified Zeldovich mechanism (fast, high T,)
ionization & O,+M - 0O0+0+M (thermal decomposition, relatively slow, high Ty)
atomization O + N> -~ N+NO (rate limiting slow reaction)
by spark N + 0O, -~ O+ NO
l [ ]
more N atoms A ISR A S | T ' ]
during spark } ﬂ Caused by l N |
l 1o //Lﬁ‘ expansion — NO ]

=

o
=
o
T

NO shortly
after spark

=

o
]
o
T

density [cm™3]

1041

1013

1012 [

time [ps]



DISCHARGE == APPLICATION == RESEARCH == UNDERSTANDING

O atoms NO, NO; and O; GENERATION MECHANISMS

i Strelamer * NO generated by modified Zeldovich mechanism (fast, high T)

nization &

ﬁg'é?zft?on O + Nz(v20) - N+ NO (rate limiting slow reaction)

by spark N/N* + O,(v=0) -~ O + NO
l o

HEEL S e T T T

during spark } \l o, | =
l / /L*;_‘;;‘\\ia‘)‘(pansﬂon — NO

=

o
=
o
T

NO shortly
after spark

=

o
]
o
T

density [cm™3]

1041

107L

102k

time [ps]
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NO, NO; and O; GENERATION MECHANISMS
* NO generated by modified Zeldovich mechanism (fast, high T,)

O + N2(v=20) - N + NO (rate limiting slow reaction)
N/N* + O,(v=0) -~ O + NO

* NO. generation/removal (relatively fast, elevated T,)

O+N0+M~NOZ+M} e S ———— .

0 +NO, — O, + NO Ol \l cecrese - | —o,
r /Lﬁ expansion — NO
7N

=
o
=
o

=
o
]
o

)
density [cm™3]

=
o
=
=

1013

10 . R ; . L . Y L1
1 10 100 1000
time [ps]
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NO, NO; and O; GENERATION MECHANISMS
* NO generated by modified Zeldovich mechanism (fast, high T,)

O + N2(v=20) - N + NO (rate limiting slow reaction)
N/N* + O,(v=0) -~ O + NO

* NO. generation/removal (relatively fast, elevated T,)

O+N0+M~NOZ+M} e S ———— .

0 +NO, — O, + NO Ol \l cecrese - | —o,
r /Lﬁ expansion — NO
7N

* O3 generation (slower, low Ty)
O + 02 + M — 03 + M

=
o
=
o

=
o
]
o

)
density [cm™3]

=
o
=
=

1013

10 . R ; . L . Y L1
1 10 100 1000
time [ps]
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NO, NO; and O; GENERATION MECHANISMS
* NO generated by modified Zeldovich mechanism (fast, high T,)

O + N2(v=20) - N + NO (rate limiting slow reaction)
N/N* + O,(v=0) — O + NO
* NO. generation/removal (relatively fast, elevated T,)

O+NO+M_>N02+M} gy
O +NO,— O, +NO O R

i decrease l ................. |
,  caused by —nos |

17
1o A expansion — NO

* O3 generation (slower, low Ty)
O + 02 + M — 03 + M

=
o
=
o

=
o
]
o

« NO; generation (slow, low Ty)
NO+03—>N02+02

density [cm™3]

=
o
=
=

1013

10 . R ; . L . Y L1
1 10 100 1000
time [ps]
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NO GENERATION ENHANCEMENT

* NO generated by N* and by modified Zeldovich mechanism (fast, high T,)

* how to increase the NO production according to model?
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NO GENERATION ENHANCEMENT

* NO generated by N* and by modified Zeldovich mechanism (fast, high T,)
* how to increase the NO production according to model?
 stronger spark pulses
* more N and N*
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optimization
criteria

NO GENERATION ENHANCEMENT

* NO generated by N* and by modified Zeldovich mechanism (fast, high T,)
* how to increase the NO production according to model?
 stronger spark pulses
 more N and N*
* slow cooling (or higher T,m)
* more time for Zeldovich mechanism reactions



DISCHARGE == APPLICATION == RESEARCH == UNDERSTANDING == OPTIMIZATION

|

optimization
criteria

NO GENERATION ENHANCEMENT

* NO generated by N* and by modified Zeldovich mechanism (fast, high T,)
* how to increase the NO production according to model?
 stronger spark pulses
 more N and N*
* slow cooling (or higher T,m)
* more time for Zeldovich mechanism reactions
* fast inflow of O./N. to hot plasma channel

* more reactants for Zeldovich mechanism reactions
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|

optimization
criteria
[1 * NO generated by N* and by modified Zeldovich mechanism (fast, high T,)

NO GENERATION ENHANCEMENT

electric * how to increase the NO production according to model?
%rocolljilftications  stronger spark pulses
 more N and N*
* slow cooling (or higher T,m)
* more time for Zeldovich mechanism reactions
* fast inflow of O./N; to hot plasma channel
* more reactants for Zeldovich mechanism reactions
* how to do it in praxis ?

e circuit modifications
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optimization
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|

electric R Lo
circuit AN\ — 2228
modifications

ELECTRIC CIRCUIT FOR TS GENERATION

<
Qe
+
O
>
1l
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! |
optimization ELECTRIC CIRCUIT FOR TS GENERATION
Cme”i  additional resistor r (0.1-30 kQ) to divide Cix (Co ~ 20 pF, C; ~ 10 pF)
electric R r Lo
circuit AANAA—T— AN N
modifications v, |,
l = Co - Ci -

additional
resistor
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ELECTRIC CIRCUIT FOR TS GENERATION
 additional resistor r (0.1-30 kQ) to divide Cix (Co ~ 20 pF, C; ~ 10 pF)

DISCHARGE == APPLICATION == RESEARCH == UNDERSTANDING == OPTIMIZATION

current [A]

— lp calculated

porBEs s L oo ey b brerna b

voltage [kV] / current [A]

—200 -150 -100 -50 O 50 100 150 200

time [ns]

Janda M. et al., Plasma Sources Sci. Technol. 20, 035015 (2011)
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! |
optimization ELECTRIC CIRCUIT FOR TS GENERATION
Cme”i * increased Cix (Co ~ 15-30 pF, C; ~ 20 pF), r = 0-470 kQ
electric R r Lo
circuit A MNA——AAANATYYN
modifications -
Vo l+ C fo C -200 0 200 400
l <= O:: ! — e T [ S \
additional ﬁ
resistor
. 1 . _ r=0Q L
= - = 10 r=102 kQ 10

current [A]

time [ns]
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* strongest effect for Co ~ 15 pF, r = 102 kQ (C; ~ 20 pF)
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INFLUENCE OF Cex ON NOXx GENERATION
 additional external capacitor Cex = 50-500 pF, Ci: ~ 20 pF
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1
S| INFLUENCE OF Co ON NOX GENERATION
C”te”i * external capacitor Cex = 50 pF, Cine ~ 20 pF, R = 9.4 MQ or 3.2 MQ
electric * Cex > 100 pF not suitable (low TS frequency)
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INFLUENCE OF Cex ON NOXx GENERATION

ClieHa * external capacitor Cex = 50 pF, Cin ~ 20 pF, R = 9.4 MQ or 3.2 MQ

|
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1
o INFLUENCE OF Ce¢ ON NOx GENERATION
optimization
C”te”i * external capacitor Cex: = 50 pF, Cit ~ 20 pF, R = 9.4 MQ or 3.2 MQ
electric * Cex > 100 pF not suitable (low TS frequency)
circuit :
el * Cex does not improve
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INFLUENCE OF Cex ON NOXx GENERATION

 external capacitor Cex = 50 pF, Cixe ~ 20 pF, R = 9.4 MQ or 3.2 MQ

* Cext > 100 pF not suitable (low TS frequency)

* Cex does not improve
NOXx generation efficiency

* Cex €nables to use lower R

* higher NOx concentration
can be achieved

* transition to glow discharge
without Ces When R = 3.2 MQ
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SUMMARY

* TS - relatively simple source of highly reactive non-thermal plasma
* streamer phase — excited nitrogen species generation mainly

» short spark phase — significant source of O and N atoms

 NO, - dominant gas phase products for TS in air

* higher temperature and high degree of ionization during spark phase

* higher efficiency of NOx generation still possible
* electric circuit modifications
* NOx production enhancement with division of capacity

* external capacity enables higher energy density and more NOx
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