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TS – DC DRIVEN SELF-PULSING DISCHARGE
● streamer initiates breakdown and short spark  

● repetitive (f ~ 1-10 kHz) charging and discharging of Cint

DC driven
self-pulsing

frequency 
1-10 kHz

streamer-to-
spark (short)

highly reactive
non-equilibrium
plasma

suitable for 
biomedical &
environmental
applications

DC power
supply

R = 5-10 MΩVg
+Cint ~ 20-30 pF

V

1 or 50 Ω 
resistor shunt  

3-
10

 m
m

Janda M. et al., Plasma Sources Sci. Technol. 20, 035015 (2011)
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● UV spectrum is dominated by N2 SPS, and N II (O II) ionic lines

● Vis spectrum can be fitted by combining N I, N II, O I, O II and H lines

● Texc ~ 30 kK (N II, O II), Texc ~ 10 kK (N I, O I)



  

BIO-DECONTAMINATION OF WATER AND SURFACES
● tested on various bacteria, yeasts, spores and biofilms

● antimicrobial agents in plasma - UV radiation, electric field, ions, neutrals 

● the effect of  reactive neutral species dominates in TS

VOCs 
removal

CO2

utilization

lean flame
stabilization

bio-medical 
applications

disinfection
of water and
surfaces
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all agents                             UV, neutral species             UV only  

Machala Z. et al., J. Phys. D: Appl. Phys. 43, 222001 (2010).
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BASIC RESEARCH OF TS STILL NEEDED

● optimization of reactive species generation

● optimal settings for generation of NO, NO2 or O3  

● optimization of chemical selectivity
● which gas phase products dominate in TS?

● can we change it?

● power efficiency

electrical 
diagnostic

liquid phase
products

optical 
diagnostic

gaseous 
products

chemical 
modeling
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EXPERIMENTAL SET-UP

R 

HV DC
Power
Supply

HV 
probe

V

1 \ 50 Ω

Vg

FT-IR spectrometer, gas analyzer (NOx, COx, HCs, O3)
Dominant products: NO, NO2 (~7×1016 molecules/J)

spectrometer
iCCD camera
photomultiplier
TC-SPC

electrical 
diagnostic

optical 
diagnostic

gaseous 
products

chemical 
modeling

oscilloscope
high voltage probe
current monitor
resistor shunts
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V, I waveforms
repetition rate
energy per pulse
plasma resistance

Tg evolution (N2 SPS)
ne evolution (Stark)
E/N in streamer
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CHEMICAL KINETIC MODEL – ZDPlasKin [1]electrical 
diagnostic

liquid phase
products

optical 
diagnostic

gaseous 
products

chemical 
modeling

list of
elements,
species
and
reactions

preprocessor
ZDPlasKin
Fortran90
Module

     +

DVODE         numerical solver for system 
library            of ordinary differential equations
     +

Bolsig+          numerical solver  
solver            of Boltzmann equation [2]
     +

module           
provided
by user 
(Fortran)         describes evolution of Tg, E/N, ...

executable
program

    +

compilation

Cross-sections           
database     

output
data

Our major task:
physical model
of Transient Spark

[1] www.zdplaskin.laplace.univ-tlse.fr
[2] www.bolsig.laplace.univ-tlse.fr 
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● E/N(t) during streamer based on literature and our experimental data [1]

● N evolution from Naidis [2], Tg from N2 SPS, E(t) calculated (discharging of Cint) [3]

● hydrodynamic expansion breakdown mechanism

[1] Janda M et al. (2018) 
     J. Phys. D: Appl. Phys. 51, 334002
[2] Naidis GV,  (2009) 
     Eur. Phys. J. Appl. Phys. 47, 22803
[3] Dvonč L., Janda M (2015) 
     IEEE Trans. Plasma Phys. 43, 2562-2570

↑T
g
  →  ↑p  →  hydrodynamic expansion  →  ↓N  →  ↑E/N  →  ionization  →  breakdown
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SHORT SPARK PHASEelectrical 
diagnostic

liquid phase
products

optical 
diagnostic

gaseous 
products

chemical 
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● starts when ionization degree reaches 2×10-2, duration 400 ns

● E(t) calculated (discharging of Cint), Tel evolution calculated
dε
dt

=
e2E2

me νm
− δ ( ε−3

2
k T g ) νm

ν
m
 – collision frequency of electrons 

ε –  electron mean energy
T
g
 –   gas temperature  

δ –    relative energy lost per collision,   
taking into account both 
elastic and inelastic processes 



  

RELAXATION PHASE – work in progresselectrical 
diagnostic

liquid phase
products

optical 
diagnostic

gaseous 
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● plasma channel expansion [1]

● temperature changes [2] 
● from measured ’steady-state’ temperature Tg

o(f)

● mixing with ambient air

● inflow (         ) of N2 and O2 

● several models tested

D
p
spark = 50 μm

D
p
max = 500-1000 μm

τ
exp

 = 3-30 μs
D p (t ) = D p

spark
+ (D p

max
−D p

spark
) {1−exp(−t / τexp)}

[1] Salmon MA (2018) Thesis, Univ. Paris-Saclay 
[2] Janda M et al. (2012) Plasma Sources Sci. Technol. 21, 045006 

T g (t ) = T g
o

+ (T g
max

−T g
o
)exp(−t / τg)

J N 2/O 2

+

J N 2/O 2

+
(t ) ∝ Δ nN 2/O2

(t )

J N 2/O 2

+
(t ) ∝ Δ p(t )
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● voltage temporal evolution – good agreement

● electron density – reasonable agreement

● suitable for study of RONS generation mechanisms

RONS – reactive oxygen and nitrogen species
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RONS DURING ACTIVE DISCHARGE PHASE
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● streamer produces mostly N2* and O atoms

● strong degree of ionization and atomization

● more N than O atoms indicates different final products

T
el

O atoms
by streamer

ionization &
atomization
by spark

more N atoms
during spark

NO shortly
after spark

NO2/O3 in 
relaxation
phase

● generation of some NO 

shortly after the spark

NO, NO2 and O3 
are mostly produced 
in relaxation phase !

e + N  ↔  e + e + N+

N+ + O
2
 → NO + O+
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NO, NO2 and O3 GENERATION MECHANISMS
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● NO generated by modified Zeldovich mechanism (fast, high Tg)

● NO2 generation/removal (relatively fast, elevated Tg)

● O3 generation (slower, low Tg)

● NO2 generation (slow, low Tg)

O
3

NO
2

NO

N

O

O2 + M → O + O + M    (thermal decomposition, relatively slow, high Tg)
O + N2(v≥0)→ N + NO         (rate limiting slow reaction)
N/N* + O

2
(v≥0)→ O + NO 

O + NO + M → NO
2
 + M

O + NO
2
 → O

2
 + NO 

O ↓

O + O
2
 + M → O

3
 + M

NO + O
3
 → NO

2
 + O

2

O atoms
by streamer

ionization &
atomization
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more N atoms
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NO GENERATION ENHANCEMENT

 DISCHARGE          APPLICATION         RESEARCH        UNDERSTANDING         OPTIMIZATION         SUMMARY 

● NO generated by N+ and by modified Zeldovich mechanism (fast, high Tg)

● how to increase the NO production according to model?

● stronger spark pulses

● more N and N+

● slow cooling (or higher Tg
max)

● more time for Zeldovich mechanism reactions 

● fast inflow of O2/N2 to hot plasma channel

● more reactants for Zeldovich mechanism reactions

● how to do it in praxis ?

● circuit modifications 

optimization
criteria

electric 
circuit 
modifications

additional 
resistor

external 
capacitor

smaller
limiting 
resistor
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Janda M. et al., Plasma Sources Sci. Technol. 20, 035015 (2011)
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● external capacitor Cext = 50 pF, Cint ~ 20 pF, R = 9.4 MΩ or 3.2 MΩ

● Cext > 100 pF not suitable (low TS frequency)

● Cext does not improve 

NOx generation efficiency

● Cext enables to use lower R

● higher NOx concentration

can be achieved

● transition to glow discharge

without Cext when R = 3.2 MΩ

 



  

SUMMARY

● TS - relatively simple source of highly reactive non-thermal plasma 

● streamer phase – excited nitrogen species generation mainly

● short spark phase – significant source of O and N atoms

● NOx - dominant gas phase products for TS in air

● higher temperature and high degree of ionization during spark phase

● higher efficiency of NOx generation still possible

● electric circuit modifications 

● NOx production enhancement with division of capacity

● external capacity enables higher energy density and more NOx
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